
Architecture Design by Transformation

Taylor L. Riché1, Don Batory1, Rui Gonçalves2, and Bryan Marker1

1 University of Texas at Austin, Austin, TX 78712 USA
{riche, batory, bamarker}@cs.utexas.edu

2 Universidade do Minho, Braga, Portugal
rgoncalves@di.uminho.pt

UTCS Technical Report TR-10-39

Abstract. We show how transformations organize and explain the designs of
legacy pipe-and-filter-architectures. We start with an elementary architecture and
progressively transform it to a detailed executable architecture. In this paper, we
(a) present an MDE-based foundation of how domain-specific design knowledge
can be organized by transformations, (b) illustrate how complex pipe-and-filter
architectures created by domain experts can be recovered and explained by apply-
ing transformations, and (c) validate our approach with examples from parallel
database-query processing and high-performance matrix computations.

1 Introduction

In the past two years, we reengineered legacy applications in multiple domains and
confronted long-standing problems: how can complex pipe-and-filter architectures be
explained in a simple way, so that non-experts (such as students, engineers, and faculty)
can understand and appreciate expert-created designs? And what principles can organize
domain-specific design knowledge yet be general enough to be useful in different
domains?

Twenty years ago, knowledge-based software engineering (KBSE) addressed these
problems with mixed success [14,35,58]. Their ideas were correct—namely that domain-
knowledge can be expressed as transformations and that automated and semi-automated
design tools could aid engineers to design reliable systems. The success of KBSE was
limited by its era: model-driven engineering (MDE) and its emphasis on transformation-
based designs were unknown then, component-based software engineering (CBSE) and
software architectures (SA) were nascent, and experience in building large systems by
transformations simply did not exist.

We depart from the classical KBSE approach that focused on microscopic transforma-
tions (a+a→ 2a) and required thousands or tens of thousands of rewrites to synthesize
a single program [14,58]. In contrast, we use transformations that express relationships
between abstractions (i.e. interfaces) and their implementing components. This enables
us to derive large programs with complex architectures by applying tens (not thousands)
of transformations to an initial and elementary architecture to synthesize a target ar-
chitecture. The target architecture was never conceived in these terms, and this makes
architectural recovery both interesting and challenging. But doing so provides a clean
prescription for explaining and reproducing architectures whose inner-workings would

otherwise remain inaccessible to a vast majority of software engineers and computer
scientists.

The contribution of this paper is a synthesis of known ideas to tackle the problems
of the introductory paragraph. The ideas of refinement and optimization are not new, nor
is the use of transformations in deriving programs new. What is new is:

– the scale at which our transformations operate compared to prior work,
– how we define and organize domain-specific design knowledge as grammars, and
– the simplicity of our approach that makes architecture design-by-transformation

practical.

We demonstrate this practicality by illustrating transformations used in classical
parallel-query-processing architectures of database machines and high-performance
dense-linear-algebra algorithms used on distributed-memory machines. We explain how
we reproduced these programs in exactly the way we describe them. We present a tool
that enables designers to 1) specify domain-specific design knowledge as grammars
graphically, 2) explore the design space by building sentences (i.e. architectures) of these
grammars interactively, and 3) demonstrate proofs-of-concept of our approach.

Finally, although our paper is definitely not about formal methods (FMs), we suggest
connections that FMs can contribute to our work. We start by reviewing the principles
behind our work.

2 The Principles of Refinement and Optimization

2.1 Refinement

A pipe-and-filter architecture is a directed graph of boxes and connectors that defines
the implementation of a system. A box is a component with input and output ports. A
connector is a communication path for messages pointing in the direction of dataflow
from an output port to an input port(s).

A filter architecture is an elementary example (Figure 1a). It consists of a single box
FILTER that takes a stream of photographs P as input, examines each photograph p in P,
and outputs p only if some criteria is satisfied. A shorter stream Q is produced. FILTER
may have other parameters, such as a photograph type and filtering criteria. We elide
these details without loss of generality.

An architectural transformation is a mapping—a graph rewrite—of an input architec-
ture to an output architecture. Suppose there are multiple (but semantically equivalent)
filtering components, FILTER1 and FILTER2, each with its own distinct performance
characteristics. A transformation could replace the FILTER box of Figure 1a with the
FILTER2 box resulting in Figure 1b. Another transformation replaces the FILTER box
of Figure 1a with its map-reduce counterpart in Figure 1c, which shows that an input
stream can be split into substreams, each substream is filtered in parallel, and the output
substreams are merged [23].

We organize transformations as productions of a grammar: let A be an abstract box
(a box that defines only the input/output ports and—at least informally—box semantics),
and G1,G2, . . . denote architectures (graphs) that implement A:

A : G1 | G2 | . . . ;

FILTER

P QSPLIT

FILTER

MERGE

FILTER

(c)

(a) FILTERP Q (b) FILTER2P Q

Fig. 1. Pipe and Filter Architectures

As an example, if FILTER of Figure 1a denotes an abstract filter box and everything else
is an implementation, we have:

FILTER : FILTER1 | FILTER2 | MapReduceFilter(FILTER) ;

Where MapReduceFilter(FILTER) denotes the architecture of Figure 1c that is
parameterized by an implementation of the FILTER abstraction. In general, wherever
abstract box A appears, any of its implementing graphs Gi can appear. Replacing an
abstraction with an implementation is refinement [54].

Of course, the Gi graphs can reference other abstractions and these abstractions have
their own productions. The collection of such productions is a grammar, and the set of
graphs that can be constructed by substituting implementations for abstractions defines
the language or domain of systems that can be synthesized by refinement.3

2.2 Optimization

Grammars define the legal compositions of refinements, but refinements alone are insuf-
ficient for synthesizing efficient systems [55]. Consider the following grammar, where
uppercase letters denote abstractions and lowercase are concrete boxes (i.e. components):

A : a B c | . . . ;
B : b | . . . ;

3 The resulting grammar is context-free. We expect more generally that such grammars will be
context-sensitive, where certain combinations of implementations may be incompatible or may
be required [8]. Context-sensitivity arises because certain properties of implementations are
not exposed by an abstraction. These properties distinguish different implementations (e.g.
performance), and may be used to constrain legal combinations of implementations.

An example is given in [45]. Directed and undirected graph components implement the
same interface. (The distinction between directed and undirected is invisible to the interface). A
component that implements a strongly-connected graph algorithm requires directed graphs. A
grammar that enforces this constraint is context-sensitive.

A sentence of this grammar is abc. Suppose box composition bc implements abstraction
Z which has the following production:

Z : bc | q ;

Further, domain-experts know that composition bc is inefficient and bc can be replaced
by box q, which is faster. This is accomplished by abstracting (i.e. reparsing) sentence
abc to aZ and then refining to a faster program by replacing Z with q to yield aq.
Abstraction followed by refinement is the essence of architectural optimization. Note
why such optimizations arise: refinement introduces inefficiencies because of component
boundaries. The pairing of bc arises because c comes from the refinement of A and b

comes from the refinement of B. Dissolving component boundaries exposes inefficiencies
which can be removed by optimizations.

Figure 2a is an elementary example. Abstract box boundaries are indicated by dashed
lines. The left box processes stream H by box F. The right box immediately processes
its input by box F−1, the inverse of F. Figure 2b dissolves these boundaries, exposes
the inefficiency, and reveals the identity abstraction of which (F followed by F−1) is an
implementation. Figure 2c shows the optimized architecture.

F F-1

Identity

H H H

(a) (b) (c)

F F-1
H H

Fig. 2. Architecture Optimizations

2.3 Perspectives
Organization. Grammars are a compact way to organize and define domain-specific
design knowledge. Each production defines a set of transformations where the abstraction
of a production can be replaced with any of its implementations. From a formal methods
perspective, this set of (abstraction, implementation) pairs defines theorems to be proven,
i.e. each refinement correctly implements its abstraction.

Design. The design of a domain-specific system is an exercise in creating and applying
transformations to derive that system. Sometimes existing transformations are sufficient.
Other times, new rewrites (such as introducing new implementations of previously-
known abstractions or new optimizations) are postulated during a design, which are to
be tested or verified later.

Existing Tools. Well-known tools for data flow and pipe-and-filter architectures, like
LabVIEW [51], Weaves [34], and Simulink [57] support refinement, but interestingly
not optimization. Domain-specific optimizations are essential to explain the case studies
that we consider later. Further, they represent a fundamental omission in existing tools.

Executability. Our models are executable. This can be seen in Figure 1. A FILTER2
box is created (typically by hand) to make the architecture in Figure 1a executable.
When we refine to Figure 1c, we create new SPLIT and MERGE boxes and link them with
FILTER boxes. The result is another executable architecture. After each refinement or
optimization, we reuse existing concrete boxes or implement new boxes to make our
architectures executable. In this way, we can execute and test (as we discuss below) our
architectures at successively detailed levels of abstraction. This is useful in architectural
development and implementation.

Testing. An appealing property of our approach is that we can define a battery of tests
for each abstraction. All implementations of that abstraction must pass these tests. So the
tests for the FILTER abstraction correspond to “unit” tests for the FILTER1 and FILTER2
boxes, and as “integration” tests for the map-reduce architecture of Figure 1c. That
is, logically the input-output response of a single FILTER box and its parallel filtering
counterpart should be indistinguishable. The same holds for optimizations.

In the next sections, we demonstrate the value of these ideas by using them to explain
sophisticated streaming architectures that were created by experts in different domains.

Challenge and Experience. Our case studies were not originally expressed in terms
of refinements and optimizations. It took time for us to polish the derivations that we
present. A contribution of our paper are the transformational designs of these legacy
applications. More on this in Section 5.2.

All of our case studies necessarily involve domain-specific knowledge, i.e. facts
that are not widely-known. Our examples illustrate exactly the principles that we just
described, and that (a) domain-specific knowledge about system design can be organized
by these principles and (b) with a small amount of domain-specific expertise, these
designs can be appreciated and replicated by others.

3 Hash Joins in Database Machines

Gamma was (and perhaps still is) the most sophisticated relational database machine
built in academics [24]. It was created in the late 1980s and early 1990s without the aid
of modern software architectural models. We focus on Gamma’s join parallelization,
which is typical of modern relational-database-machine designs. What is new in this
section is our presentation of Gamma. Published descriptions are informal [24]; our
presentation is a derivation from first principles. Each step (refinement or optimization)
that we make has been proven correct [10], and we have implemented our design exactly
as we presented it and verified our implementation with tests.

A hash join is an implementation of a relational equi-join; it takes two streams (A,B)
of tuples as input and produces their equi-join (A on B) as output. The basic hash join
algorithm is simple: read all tuples of stream A into a main-memory hash table, where
the join key of A tuples are hashed. Then read stream B, one tuple at a time. By hashing
a B tuple’s join key, one can quickly identify all A tuples that join with the B tuple. This
algorithm has linear complexity in that each A and B tuple is read only once. Figure 3a
shows the executable HJOIN architecture that we start with.

HJOINA
B A⋈B A⋈B

BFILTER

HJOIN
A

M

B'

A

B

BLOOM

(a) (b)

HJOIN

bloomfilter

Fig. 3. Hash Join Architecture

3.1 Bloom Filtering Refinement

Joins are among the most expensive database operations. Gamma makes an ingenious
use of Bloom filters [17]—a simple approximation of semijoins—to reduce the number
of tuples to join. It uses two new boxes: BLOOM (to create the filter) and BFILTER (to
apply the filter). This refinement of HJOIN is shown in Figure 3b.

Here is how the refinement works: the BLOOM box takes a stream of tuples A as input
and outputs exactly the same stream A along with a bitmap M. The algorithm first clears
M. Each tuple of A is read, its join key is hashed, the corresponding bit (indicated by the
hash) is set in M, and the A tuple is output. After all A tuples are read, M is output. M is the
Bloom filter.

The BFILTER box takes Bloom filter M and a stream of tuples B as input, and
eliminates B tuples that cannot join with A tuples. The algorithm begins by reading
M. Stream B is read one tuple at a time. Each B tuple’s join key is hashed, and the
corresponding bit in M is checked. If the bit is unset, the B tuple is discarded as there is
no A tuple to which it can be joined. Otherwise the B tuple is output. Stream B′ is the
result.

3.2 Parallelizing Refinements

Next, we refine the BLOOM, BFILTER, and HJOIN boxes by replacing each with their
map-reduce versions (Figure 4). A BLOOM box is parallelized by hash-splitting its input
stream A into substreams A1 . . .An, creating a BLOOM filter M1 . . .Mn for each substream,
coalescing A1 . . .An back into A, and merging bit maps M1 . . .Mn into a single map M.

A BFILTER box is parallelized by hash-splitting its input stream B into substreams
B1 . . .Bn, where the same hash function that splits stream A is used to split stream B. Map
M is decomposed into submaps M1 . . .Mn and substream Bi is filtered by Mi. The reduced
substreams B′1 . . .B

′
n are coalesced into stream B′.

The parallelization of the HJOIN box is textbook [7]: both input streams A, B are
hash-split on their join keys using the same hash function as before. Each stream Ai
is joined with stream Bj (i,j ∈ 1 . . .n), yielding n2 HJOIN boxes. Since an equi-join is
computed, we know Ai on Bj = /0 for all i 6= j (as equal keys must hash to the same
value). Thus, a single abstract HJOIN box is replaced by n HJOIN boxes instead of n2

boxes as all other HJOIN boxes have provably null outputs. By merging the joins of
Ai on Bi (i ∈ 1 . . .n), Aon B is produced as output.

Figure 4 shows the result of applying all three parallelization refinements to Figure 3b.

HSPLIT

MMERGE

...A ...

MERGEHJOIN1

HJOINn

MERGE

MSPLIT

...

MERGE

HSPLIT

BFILTER1

BFILTERnB

A⋈BA

M B'

HSPLIT

HSPLIT

BLOOM1

BLOOMn

A1

A n

A1
A
n

B’1

B’ n

B’ 1

B’nMn

M
n

M1

M
1

HJOIN

Fig. 4. Parallel Refinements

3.3 Optimizations

A primary goal of Gamma was to determine performance increases in joins that could be
gained by parallelization. The architecture of Figure 4 has three serialization bottlenecks
which degrade performance. Consider the MERGE of substreams A1 . . .An into A, followed
by a HSPLIT to reconstruct A1 . . .An. There is no need to materialize A: the (MERGE,
HSPLIT) pair is the identity map: Ai→ Ai (i ∈ 1 . . .n). The same applies for the (MERGE,
HSPLIT) pair for collapsing and reconstructing substreams B′1 . . .B

′
n. The removal of

(MERGE, HSPLIT) pairs eliminates two serialization bottlenecks. See Figure 5a.
The third bottleneck combines maps M1 . . .Mn into M and then decomposes M back

into M1 . . .Mn. The (MMERGE, MSPLIT) pair is also the identity map: Mi→ Mi (i ∈ 1 . . .n).
This optimization removes the (MMERGE, MSPLIT) boxes and reroutes the streams appro-
priately.4 See Figure 5b.

MMERGE MSPLIT

M1

Mn

M1

Mn

M1

Mn

M1

Mn

MERGE HSPLIT

A1

An

A1

An

A1

An

A1

An
(a)

(b)

OPTID OPTID

OPTIDM OPTIDM

optid1

optidm1
nothingm

nothing

Fig. 5. Hash Join Optimizations

4 There are many ways in which MMERGE and MSPLIT can be realized. The simplest is this: M is a
n×k bitmap. The join key of an A tuple is hashed twice: once to determine the row of M, the
second to determine the column within the selected row. Thus, all tuples of substream Ai hash
to row i of M. MMERGE combines M1 . . .Mn into M by boolean disjunction. For each i, MSPLIT
extracts row i from M and zeros out the rest of Mi.

Figure 6 shows the result of all three optimizations, which is the design Gamma uses
to parallelize a single join. Also note Figure 6 is an executable architecture, as are all
architectures that we present. Remember that users provide the source code for each box.
Tools, such as LabVIEW [51], Weaves [34], or Lagniappe [56] can stitch the boxes of
Figure 6 together to produce an executable.

...A ...

...

B

A⋈B
HSPLIT

BLOOM1

BLOOMn

MERGEHJOIN1

HSPLIT

BFILTER1

BFILTERn

HJOINn

Fig. 6. Gamma Parallelized Hash Join

This is not the last word on Gamma’s parallel join architecture [9]. Additional
transformations are used to optimize cascading hash joins, i.e. the output of one join is
the input to another join. See the Appendix for more details.

3.4 Perspective

Grammar. The grammar that is used in Gamma’s design is listed below, where
CAPITAL names denote abstractions and lowercase names are primitive boxes. As
before, bloomfilter(BLOOM,BFILTER,HJOIN) refers to the parameterized architecture
of Figure 3b, where parameters specify implementations of the BLOOM, BFILTER, and
HJOIN abstractions. The rest of the grammar is interpreted similarly.

HJOIN : hjoin
| bloomfilter(BLOOM, BFILTER, HJOIN)

| parallelhjoin(HSPLIT, HJOIN, MERGE) ;
BLOOM : bloom

| parallelbloom(HSPLIT, BLOOM, MERGE, MMERGE) ;
HSPLIT : hsplit ;
BFILTER : bfilter

| parallelfilter(HSPLIT, MSPLIT, BFILTER, MERGE) ;
MERGE : merge ;

MMERGE : mmerge ;
MSPLIT : msplit ;
OPTID : optid1(HSPLIT, MERGE)

| nothing ;
OPTIDM : optidm1(MSPLIT, MMERGE)

| nothingm ;

Evaluation and Correctness. As mentioned earlier, every (abstraction, implementation)
pair represents a theorem to be proven. Doing so lays the foundation for correct-by-
construction designs, e.g. if the initial design is correct and all transformations applied
to it are correct, then the final design is correct [39]. We have proofs of correctness
(or can cite proofs of correctness) for every production [10]. Further, we implemented
the complete Gamma architecture by hand as described above using Java threads and
pipes. A more convincing validation was giving the design/derivation of Gamma as an
assignment to upper-division software engineering classes totalling over 60 students in
Spring and Fall 2010. Other than discovering that serialized objects do not work well with
Java pipes (but if String-based serializers are used there is no problem), the assignment
could be completed, confirming that our MDE architecture was both explanatory and
prescriptive for system reconstruction.

In presenting this material to graduate database students, we observed that it is
easier to remember the derivation of Gamma’s architecture than the graph of Figure 6.
Implementing and testing Gamma hash joins is an interesting exercise in correct-by-
construction development: we were assured at every step that our Gamma models were
provably correct and with tests that our implementations were demonstrably correct.

4 Distributed Memory Cholesky Factorization

Elemental [52] is a distributed-memory, dense linear algebra library that uses a highly-
structured, objected-oriented programming style to manage data distributions and com-
putations. It is the next-generation of PLAPACK [2,64], one of the two most popular
packages used by the high-performance computing community—the other is ScaLA-
PACK [5,16]. Among the advantages of Elemental is (a) better performance and scal-
ability than PLAPACK and ScaLAPACK [52], (b) its code is easier to read and rea-
son about because of the data distributions it uses and the way that computations are
parallelized [52], and (c) its programming style allows one to mechanically optimize
algorithms by distributing data and computation, but this task is currently done manually
by an expert. There is nothing novel performed by the expert because the techniques
have been known for many years and are formulaic, but they have never been cast in a
systematic approach that uses abstractions and refinements. By doing so, we can encode
the domain-specific details of transformations and optimizations into a format that allows
a system to automate a process previously done only by hand.

Cholesky factorization is a common technique for solving a system of linear equa-
tions and is a representative program that illustrates transformations that exist in the
dense-linear-algebra domain. The result of a Cholesky factorization of a symmetric,
positive definite matrix A is a lower-triangular matrix L such that A= L ·L∗, where L∗

denotes the conjugate transpose of L.
The Cholesky algorithm we use marches through the matrix being factored from

the top-left to the bottom-right, and can be characterized entirely by the updates found
in the body of the loop that strides through the matrix [65]. The updates operate on
the blocks of the matrix labelled A11, A21, and A22 in Figure 7a, which holds a block
of the diagonal (A11), the panel below the diagonal block (A21), and the block to the
bottom-right of the diagonal (A22). The horizontal and vertical lines of Figure 7a move

down and to right, respectively, with each iteration, thus marching through the matrix and
indexing different sub-blocks at each iteration. The initial loop body, CHOLLOOPBODY,
is shown in Figure 7b. Blocks A11, A21, and A22 of the original matrix are inputs, and
the updated versions A′11, A′21, and A′22 are output. The factorization only touches the
lower-triangular portion of the matrix and at each iteration—blocks other than A11, A21,
and A22 are unchanged. Sequentially replicating and composing panels of Figure 7b
unrolls the loop, where successive iterations cause A00 to grow in size and A21 and A22 to
shrink. A11 remains the same size, chosen for the best performance, with the possible
exception of the final iteration.

A00	 	 	 	 0	 	 0	
A10	 	 A11	 	 	 0	
A20	 	 A21	 	 A22	

(a) Blocking of Matrix A

DCHOL
DTRSM

DHERKLN

A11

A22

A21

A11'

A22'

A21'

CHOLLOOPBODY

(b) Initial Implementation of Cholesky Factorization

Fig. 7. Cholesky Factorization

Distribution Location of data in matrix
[∗,∗] All processes store all elements
[MC,MR] Process (i%r,j%c) stores element (i,j)
[MC,∗] Row i of data stored redundantly on process row i % r
[MR,∗] Row i of data stored redundantly on process column i % c
[VC,∗] Rows of matrix wrapped around process grid in column-major order

Table 1. Elemental Data Distributions in a p= r×c Process Grid

Operation Explanation
DCHOL Distributed Cholesky Factorization
LCHOL Local Cholesky Factorization, all process compute the same results
DTRSM Distributed triangular solve with multiple right hand sides
LTRSM Local triangular solve with multiple right hand sides, all processors compute an

equal portion of the result
DHERKLN Distributed Hermitian (rank-k) update
LHERKLN Local Hermitian (rank-k) update, all processors compute an equal portion of the

result
[x,y] → [z,w] Redistribute data from Elemental distribution [x,y] to [z,w]

Table 2. Operations in Cholesky Factorization

The termination condition is for A11, A21, and A22 to be of zero size. In short, the
input matrix A of the algorithm enters at the far left of the replicated panels, and the
output matrix L exits at the far right [36,37].

A distributed-memory machine has p processing cores. Elemental creates p processes,
one per core, and views these processes as a 2-dimensional r×c grid, where the values
of r and c are determined experimentally. The default distribution of matrix data,
labeled [MC,MR], uses a 2-dimensional, cyclic mapping. Listed in Table 1 are other data
distributions that are obtained by communication between the processors that involve
rows, columns, or all of the grid [52]. Table 2 lists the boxes (redistributions and
computations) that are relevant to our Cholesky example.

Figure 7b shows a refinement of CHOLLOOPBODY as a cascading sequence of update
boxes. The input and output data distributions for each box are the standard distribution
in Elemental, [MC,MR]. Dot (•) is simply a notation to indicate that a stream is replicated;
there is no code for •. The important point is that data can be redistributed or commu-
nicated between all processors using redistributions. Internally, the boxes in Figure 7b
redistribute data; refining their implementations provides subsequent opportunities for
optimizations to reduce costly redistributions. The purpose is to accrue the benefits
of improved load balance with the cost of the communication required to obtain that
improvement.

4.1 Refinements

Each of the boxes in Figure 7b are abstractions that can be implemented in multiple
ways. Each implementation has different performance characteristics due to the ways
computation is parallelized and data is distributed. Figure 8 shows one way to refine
each of these abstractions.

4.2 Redundant Redistribution Optimization

After applying the refinements of Figure 8, we flatten the design to eliminate abstraction
boundaries. Now consider Figure 9, which shows the composition of the right-most box
of DCHOL composed with the upper-left-most box of DTRSM. For lack of a better name,
we call this abstraction OPT1. The input to OPT1 has the distribution [∗,∗], which is then
changed to [MC,MR] to produce output K, and then redistributed back to [∗,∗] to produce
output J. Figure 9 shows a more compact and efficient way to achieve this same goal.

4.3 Redistribution Refinement

Now look at the left-hand side of Figure 10, which depicts a sub-architecture of DHERKLN.
Each of the depicted redistributions can be refined into a series of more primitive
redistributions, as shown in the right-hand side of Figure 10. Note that there is a replicated
distribution in this rewrite, namely [MC,MR]→ [VC,∗], that is unnecessary. Figure 11 shows
the rewrite that improves performance, whose abstraction we call OPT2.

LCHOLA11 A11'[MC,MR]→[*,*] [*,*]→[MC,MR]

DCHOL

DCHOLA11 A11'

LTRSM
A21 [MC,MR]→[VC,*]

[MC,MR]→ [*,*]
[VC,*]→[MC,MR]DTRSM A21' A21'

DTRSM

A22

DHERKLN [MC,MR]→[MC,*]

[MC,MR] →[MR,*]

LHERKLN

DHERKLN

A11'

A21

A11'

A21'
A22'

A22

A21'

A22'

(a)

(b)

(c)A21' A21'

Fig. 8. Refinements of the DCHOL, DTRSM, and DHERKLN Boxes

[*,*]→[MC,MR]
[MC,MR]→ [*,*]

[*,*]→[MC,MR]

opt1a opt1b

OPT1 OPT1

J
J
K

J

J

K

Fig. 9. The OPT1 Redistribution Optimization

[MC,MR]→[VC,*]

[MC,MR]→[MC,*]

[MC,MR] →[MR,*]
I I

[VC,*]→[VR,*]

[VC,*]→[MC,*]

[VR,*]→[MR,*]

[MC,MR]→[VC,*]

[MC,MR] →[MR,*]

[MC,MR]→[MC,*]
J

K

J

K

ref1

ref2

Fig. 10. Refinements of Two Redistributions

[MC,MR]→[VC,*]J

opt2b

[MC,MR]→[VC,*]

J

[MC,MR]→[VC,*]

opt2a

OPT2

OPT2K

K

K

K

Fig. 11. The OPT2 Redistribution Optimization

4.4 Another Redistribution Optimization

There is one last redistribution optimization. Look at Figure 12, which contains a cascad-
ing series of three redistribution boxes, whose abstraction we call OPT3. The left-most
box of OPT3 comes from the right-most box of DTSRM (Figure 8b). The remaining boxes
of OPT3 are two of the cascading boxes of Figure 10. As in the previous optimization,
there is a more compact and efficient way to achieve this same goal. Figure 12 shows
this rewrite. Figure 13 depicts the final architecture of our Cholesky program.

[MC,MR]→[VC,*] [VC,*]→[MC,*]
[VC,*]→[MC,MR]

J

[MC,*]→[MC,MR][VC,*]→[MC,*] J

OPT3

opt3a

opt3b

OPT3

I

I

K

I I
K

Fig. 12. The OPT3 Redistribution Optimization

LChol

LTRSM

LHERKLN

A11

A22

A21

A11'

A22'

A21'

[MC,MR]→[*,*] [*,*]→[MC,MR]

[MC,MR]→[VC,*]

[VC,*]→[MC,*]

[VC,*]→[VR,*] [VR,*]→[MR,*]

[MC,*]→[MC,MR]

CHOLLOOPBODY

Fig. 13. Final Architecture

4.5 Perspective

Grammar. The grammar of the Cholesky Loop Body is shown below.

CHOLLOOPBODY : cholloopbody(DCHOL, DTRSM, DHERKLN) ;
DCHOL : dchol(MCMR2∗∗, LCHOL, ∗∗2MCMR) ;
DTRSM : dtrsm(MCMR2∗∗, MCMR2VC∗, LTRSM, VC∗2MCMR) ;

DHERKLN : dherkln(MCMR2MR∗, MCMR2MC∗, LHERKLN) ;
LCHOL : lchol ;
LTRSM : ltrsm ;

LHERKLN : lherkln ;
OPT1 : opt1a(∗∗2MCMR, MCMR2∗∗)

| opt1b(∗∗2MCMR) ;
OPT2 : opt2a(MCMR2VC∗)

| opt2b(MCMR2VC∗) ;
OPT3 : opt3a(VC∗2MCMR, MCMR2VC∗, VC∗2MC∗)

| opt3b(VC∗2MC∗, MC∗2MCMR) ;
MCMR2∗∗ : [MC,MR]→ [∗,∗] ;
MCMR2VC∗ : [MC,MR]→ [VC,∗] ;
MCMR2MR∗ : [MC,MR]→ [MR,∗]

| ref1(MCMR2VC∗, VC∗2VR∗,VR∗2MR∗) ;
MCMR2MC∗ : [MC,MR]→ [MC,∗]

| ref2(MCMR2VC∗, VC∗2MC∗) ;
∗∗2MCMR : [∗,∗]→ [MC,MR] ;

VC∗2MCMR : [VC,∗]→ [MC,MR] ;
VC∗2VR∗ : [VC,∗]→ [VR,∗] ;
VR∗2MR∗ : [VR,∗]→ [MR,∗] ;
VC∗2MC∗ : [VC,∗]→ [MC,∗] ;

Evaluation. Each box in Figure 13 can be mapped, one-to-one, to a single function
call in Elemental code. The resulting code is the same as the hand-optimized version
produced by the expert developer of Elemental. The performance of that code, seen in
Figure 14, outperforms the existing leading packages in this field. These and other results
were obtained on Argonne National Laboratory’s IBM Blue Gene/P machine [52]. This
experiment was run on 8192 cores with a theoretical peak performance of 27 TFlops.

The boxes in the above graphs or the equivalent operations in Elemental are complex
and include a lot of functionality. This functionality is largely implemented using
wrapper code that calls into the standardized, well-established BLAS, LAPACK, and

 0
 2
 4
 6
 8

 10
 12
 14

 0 2 4 6 8 10

TF
lo

ps

Dimension (105)

Elemental
ScaLAPACK

Fig. 14. Cholesky performance on 8192 cores

MPI routines [44,25,4,59]. For now we do not consider those details in our grammar, but
it may be useful to do so in the future to expose more opportunities for optimizations.

Correctness. The loop body shown in Figure 7b is derived from the Cholesky factor
of the input matrix; it is provably correct. Furthermore, each of the refinements we
applied above can be proven to maintain the correctness of their abstractions. (Indeed,
the sequential code with which we start was formally derived to be correct [65].) Thus,
the results of the above methods create provably correct implementations of Cholesky
factorization.

As for the correctness of the actual program, when translating an optimized algorithm
to Elemental code, there is little room for error as we use a one-to-one mapping. The
functionality expected from the boxes above is the exact same as the functionality
expected from the mapped lines in Elemental code. Elemental code calls functions in
libraries that are not proven correct, but they are so widely used that correctness is
trusted throughout this domain. Furthermore, the wrapper code that calls those libraries
is sufficiently formulaic and well-tested to trust as well. Therefore, the correctness of the
code derived using our methods and implemented in Elemental can be trusted.

5 Tools, Methodology and Experience

5.1 Tools

We are developing a tool using the Eclipse Graphical Modeling Framework [27] and
Epsilon [29]. Our goal is to create an machine-assisted environment for designers to
develop pipe-and-filter architectures, to postulate new refinements and new optimizations,
and to apply transformations to incrementally derive a specific architecture.

Models Our tool allows developers to express the abstractions of a domain, the algo-
rithms that implement them, the optimizations, and derived architectures. It provides five
types of objects: (1) Abstraction, (2) Algorithm, (3) Pattern, (4) Input, and (5) Output,
and two types of associations: (1) Connector and (2) Implementation. Figure 15 shows a
UML diagram of the tool’s metamodel.

name : String

Element

Box

dataType : String

Port

Output

Connector

Implementation

1

*
1

1

1
*

source target

target

source
ports

Abstraction

Algorithm

Input

elements

Pattern

Fig. 15. Tool’s Metamodel

An Abstraction object with its input and output ports models an abstract box. An
Algorithm object models an algorithm. In addition to its input and output ports, we add
other boxes and connectors inside, creating a dataflow graph that specifies an algorithm’s
details. An Implementation association pairs an abstraction to each of its algorithms,
creating a grammar with abstractions on the left and algorithms on the right. Metamodel
constraints ensure that all input and output ports of an abstraction are present in each of
its implementing algorithms.

Figure 16 shows part of the grammar that we need to derive the example from
Section 3. We have the abstraction HJOIN, and two algorithms, bloomfilter and
parallelhjoin. The dashed arrows are Implementation associations.

A pattern box specifies an algorithm to be abstracted. Like an algorithm box, it is
paired with an abstraction and other plug-compatible algorithms. Patterns are distin-
guished from algorithms in that our tool searches for patterns when optimizing designs.

Transformations Given an initial architecture, designers can replace any abstraction
box with an algorithm that implements it. If there is more than one algorithm for the
abstraction, the user will be asked to choose one. If a desired algorithm is not present,
users can extend the list of algorithms and postulate his/her own designs.

Refinements produce a hierarchy of dataflow graphs that require optimizations. Our
tool has a flatten transformation that removes modular boundaries. A user can then
abstract a set of boxes and then refine to a new implementation. These two steps can
be executed separately, using the abstract transformation, followed by the refinement
transformation, or as a single step, using the optimize transformation. To help the user,

Fig. 16. HJOIN Abstraction and its bloomfilter and parallelhjoin Algorithms

we also provide the find pattern transformation, that identifies the sets of boxes present
in the program that can be abstracted and then optimized.

Further Work Our tool will soon offer a transformation that converts an architecture
to code. We have code for all the examples in this paper, but have not made the last
step to connect our tool to our implemented components. Further, our plan is to enrich
grammars with additional information, such as port data types and cost functions for
each box. Doing so would allow us to type check designs, and cost functions would
allow us to automate the derivation of optimized programs. Further, our tool will support
extension transformations—besides refinements and optimizations—that add features
(i.e. additional capabilities) to existing architectures [60].

5.2 Methodology and Experience

We tackled a general problem: there are many domains where applications use pipe-and-
filter architectures, such as virtual instrumentation [51], data processing [31], graphics
processing [6], and cloud computing [3,33] that could benefit from our work.

We faced five challenges: (1) Identify principles that allowed us to develop architec-
tures in different domains incrementally. (2) Acquire an understanding of the Gamma
and Cholesky (dense matrix computation) domains. And (3) decompose the Gamma
and Cholesky architectures, as their original designs were certainly not expressed by
transformations. Although choosing principles, understanding domains, and decompos-
ing sounds sequential, early on they were concurrent tasks, eventually converging to the
results in this paper.

Our approach works because there are natural abstractions in domains that engender
multiple implementations. In databases, the JOIN abstraction was known in the early
1970s. Many JOIN algorithms were invented in the following 10-15 years, often being
focal points in database conferences. The same holds for linear algebra, where multiple
algorithms for implementing common abstractions (e.g. matrix multiply) abound.

Challenge (4) was understanding and viewing an architecture as the result of applying
transformations or algebraic rewrites to an elementary architecture. Query optimization
in databases is understood in terms of relational algebra, and applying rewrite rules
(algebraic identities) to map an inefficient relational algebra expression to an efficient
relational algebra expression. Linear algebra had the benefit of a mathematical foundation
from the beginning. Relating design to algebra (or transformations) is an inherently
structured approach to architecture creation. It was one of the tenets of KBSE and is
fundamental to our work.

Another reason why our approach works is that pipe-and-filter architectures often
have a nice “functional” or stateless property, raising similarities to techniques used
in optimizing functional programs [41]. Gamma hash joins and Cholesky factorization
algorithms are certainly stateless. We have applied these same ideas to recover transfor-
mational designs of crash-fault-tolerant servers that are stateful [55], so we believe the
paradigm we are advancing is broader, but has predecessors in various forms in other
fields. More on this in Related Work (Sec. 6).

We argue that the role of grammars—especially recursive grammars—in organizing
domain-specific design transformations is fundamental. We noticed long ago [11] that
grammars are naturally recursive when describing transformational designs of software.
The recursive nature of the FILTER production of Section 2.1 (where MapReduceFilter
recursively calls the FILTER abstraction) is typical: recursion is how patterns (imple-
mentations) can be composed in combinatorial numbers of ways.

Challenge (5) was to explain the genius of legacy designs in a simple manner: it took
us months to polish the derivations of our case studies. Developing the insights behind
these designs takes effort. As we have matured, our ability to reconstruct legacy designs
as transformational designs takes less time, but is definitely not a trivial task.

6 Related Work

Twenty-five years ago, we modeled the architectures of commercial database systems as
a composition of refinements [13]. We have since shown that similar ideas generalize
to describe software product lines [12,62]. We expect, and have no reason to question,
that refinement and optimization (and ultimately extension [60]) applies far beyond the
domains we mentioned in this paper.

Our approach leverages MDE: we start with an elementary architecture and transform
it into complex architectures. What is unusual is our reliance on endogenous transfor-
mations—transformations whose domain and co-domain are the same. MDE literature
focuses on exogenous transformations—mappings whose domain and co-domain are
different [48]. For example, each architectural style has its own metamodel. Prior work
mapped architectures of one style to an architecture of another [1,28,38,63]. Endogenous
transformations have been used sparingly, not for incremental architectural development
as we do, but to simulate architecture execution (e.g., adding and removing clients in
a client-server system) [21,49]. The few cases where endogenous transformations are
composed to produce MDE designs [62,66,68] deal with simple transformations that
encode extensions as model deltas, not the refinements and optimizations that we present.

There is a rich collection of papers on architecture refinement: we limit our dis-
cussions to key papers for lack of space. Traditional approaches start with an abstract
architecture or specification and then apply refinements to progressively expose more hi-
erarchical detail on how the abstract architecture is implemented. Some researchers have
shown that their refinements can be verified, not violating any of the original design’s
properties [15,38,49,50]. Our work differs from traditional refinement in three ways: 1)
We start with an executable architecture and apply endogenous transformations to expose
implementation details and maintain architecture executability. 2) We are unaware of
prior work that uses architectural optimizations. And 3) the role of transformations
in architectural design (as we presented it) is under-appreciated. Broy seems to lay a
mathematical foundations for extension [18,19], but we are unaware of a recent system
that puts his ideas into practice.

Practical tools for building pipe-and-filter architectures also have a long history.
LabVIEW [51] (marketed since the mid-1980s), Weaves [34], and Simulink [57] are
platforms for executing such architectures. Refinement is their sole abstraction; user-
defined optimizations are absent.5 Other component-based systems follow a similar
approach [20,22,32,67]. More recent tools are StreamIt [61] and Click [42]. StreamIt is
a general language for expressing stateless streaming applications; it uses map-reduce
for automatic parallelization. Click demonstrated the feasibility of programmable routers
using streaming architectures. To the best of our knowledge, none of these tools support
architectural optimizations. It came as a big surprise to us that optimizations (as well as
extensions) are absent in these tools. Not having them is a fundamental omission.

SPIRAL [53] is an approach in the digital signal processing (DSP) domain to
implement automatically DSP operations in architecture-specific, high-performance
code. SPIRAL recursively applies refinements to the sub-operations to generate many
implementations and uses machine learning techniques with feedback from compiling
and timing implementations to choose the best performing option. The mathematical
nature of SPIRAL is very similar to the linear algebra domain explored in Section 4.
In both cases, many potential implementations can be created, but the runtime of DSP
operations is much less than that of dense linear algebra algorithms. Therefore, it is
likely not feasible to run potential implementations of the Cholesky factorization to find
the best as SPIRAL does. Instead, we can use theoretically proven lower-bound cost
models for the implementations’ sub-operations. Then, we can choose the theoretically
best implementation of all possibilities by summing the sub-operations’ costs to get
each implementations’ cost. We already have a prototype system that does just that [47].
It applies the transformations described in Section 4 as well as many more, generates
hundreds of possible implementations, and analytically determines the implementation
in Figure 13 is the optimal for the target machine across a wide range of problem sizes.

Our work is an example of software architecture recovery [26,43]. Classic research
focuses on tools, data exchange formats, and metrics for extracting and clustering in-
formation from source (code, makefiles, documentation, etc.) and application execution
traces to reconstruct an architecture [30,40,46]. Our approach is different: our decom-

5 Simulink provides the ability to abstract a set of boxes and encapsulate them into a single box.
However, there is no model specifying which subgraphs can be abstracted or the alternative
implementations.

position is based on semantics and not metrics; we start by understanding the domain
and application plus that which we can gain from domain-experts, rather than from
code and execution traces. Our work is more in line with architectural recovery using
MDE, where a system is described by multiple viewpoints (metamodels) and their views
(models) [30]. But even here our work is different, as we start with a well-known view-
point (a pipe-and-filter architecture) and stress the role of transformations to derive an
architecture’s design. Few papers in this area emphasize both the descriptive nature of
extracted models and their prescriptive ability to reconstruct a system.

Finally, our work may be a practical foundation for a correct-by-construction
paradigm for architecture creation: if the initial architecture is correct, and its trans-
formations are correct, the resulting architecture is correct. We have proofs that the
transformations used in Gamma’s architecture are correct [10], and comparable state-
ments can be made for the Cholesky architecture as well. Here is where formal methods
may make a fundamental contribution to our approach in the future.

7 Conclusions

Expressing design knowledge as transformations has rich historical roots. With the
advent of MDE, component-based software engineering, and experience in synthesizing
large systems transformationally, taking the next step to express architecture design by
transformations is latent.

We have shown how the application of tens (not thousands) of transformations can
explain the designs of legacy pipe-and-filter-architectures in a MDE fashion. Although
our descriptions of our case studies look simple and straightforward, it took considerable
effort on our part to understand their domains and to identify and polish their core
abstractions and transformations to produce the results of this paper. In time, after we
examine more applications in these domains, we believe that we can collect sufficient
domain knowledge as transformations to create knowledge-based design assistant tools
to help designers create (or automate) designs in well-understood domains [35].

We use grammars to encode domain-specific design knowledge; sentences of a gram-
mar define the domain of architectures that can be synthesized by refinement. Further
applying optimizations (also expressed as productions in our grammars) expands the
domain of architectures that can be synthesized. Our case studies show that optimizations
are essential in recovering transformation-based designs of legacy systems. Further, our
approach is general: although we focused on two case studies from disparate domains,
we cited many other domains to which our approach could be applied.

Perhaps the most significant contribution of our work is its simplicity: our experience
has shown that the ideas are eminently teachable and understood by non-domain experts,
such as undergraduates and graduates. We believe this simplicity shows that design-by-
transformation of software architectures is practical.

Acknowledgments. We gratefully acknowledge helpful feedback from R. van de Geijn
and J. Poulson (UTexas), U. Eisenecker (Leipzig), G. Heineman (WPI), G. Karsai
(Vanderbilt), E. Hehner (Toronto), H. Vin (Tata Consulting), C. Lengauer (Passau), M.
Azanza (Basque Country), A. Clement (UTexas), and S. Trujillo (IKERLAN) on earlier

versions. Batory and Riché are supported by the NSF’s Science of Design Project CCF
0724979. Riché was additionally supported by NSF’s Computer Systems Research Grant
CNS 0509338. Bryan Marker was partially supported by NSF grants OCI-0850750 and
CCF-0917167, and a Sandia National Laboratory fellowship. Rui Gonçalves is supported
by Portuguese Science Foundation (FCT) grant SFRH/BD/47800/2008.

References

1. M. Abi-Antoun and N. Medvidovic. Enabling the Refinement of a Software Arch. into a
Design. In UML, 1999.

2. P. Alpatov, G. Baker, C. Edwards, J. Gunnels, G. Morrow, J. Overfelt, R. van de Geijn, and
Y.-J. J. Wu. PLAPACK: Parallel linear algebra package – design overview. In Proceedings of
SC97, 1997.

3. Amazon web services. http://aws.amazon.com/.
4. E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. J. Dongarra, J. D. Croz,

S. Hammarling, A. Greenbaum, A. McKenney, and D. Sorensen. LAPACK Users’ guide (third
ed.). Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

5. E. Anderson, A. Benzoni, J. Dongarra, S. Moulton, S. Ostrouchov, B. Tourancheau, and
R. van de Geijn. Lapack for distributed memory architectures: Progress report. In Proceedings
of the Fifth SIAM Conference on Parallel Processing for Scientific Computing, pages 625–630,
Philadelphia, 1992. SIAM.

6. E. Angel. Interactive Computer Graphics: A Top-Down Approach using OpenGL. Addison-
Wesley, 2009.

7. F. Baru. DB2 Parallel Edition. IBM Sys. Journal, 34(2), 1995.
8. D. Batory. Feature Models, Grammars, and Propositional Formulas. In SPLC, Sept. 2005.
9. D. Batory. A Shorter Derivation of the Gamma Architecture. Fall CS378 Final, 2010.

10. D. Batory. The Gamma DB Machine Architecture. In Preparation, 2010.
11. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Software Systems

with Reusable Components. ACM Transactions on Software Engineering and Methodology
(TOSEM), 1:255–298, 1992.

12. D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise Refinement. IEEE TSE, 30,
June 2004.

13. D. S. Batory. Modeling the Storage Architectures of Commercial Database Systems. ACM
Trans. on Database Systems, 10:463–528, 1985.

14. I. Baxter. Practical issues in building knowledge-based code synthesis systems. 6th Annual
Reuse Workshop (WISR’93), 1993.

15. J. P. Bernhard and B. Rumpe. Stepwise Refinement of Data Flow Architectures. Technical
Report TUM-19746, TU München, 1997.

16. L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra,
S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK
Users’ Guide. SIAM, 1997.

17. B. H. Bloom. Space/Time Trade-Offs in Hash Coding with Allowable Errors. Commun. ACM,
13(7):422–426, 1970.

18. M. Broy. Compositional Refinement of Interactive Systems. JACM, 44(6), 1992.
19. M. Broy. Multifunctional Software Systems: Structured Modeling and Specification of

Functional Requirements. Science of Computer Programming, 2010.
20. E. Bruneton, T. Coupaye, and J. Stefani. The Fractal Component Model. http://fractal.

ow2.org, 2004.

http://aws.amazon.com/
http://fractal.ow2.org
http://fractal.ow2.org

21. R. Bruni, A. Bucchiarone, S. Gnesi, D. Hirsch, and A. L. Lafuente. Graph-Based Design and
Analysis of Dynamic Software Arch. In LNCS. Springer-Verlag, 2008.

22. J. Cobleigh, L. Osterweil, A. Wise, and B. Lerner. Containment units: A hierarchically
composable architecture for adaptive systems. In FSE, 2002.

23. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large Clusters. In
OSDI, Dec. 2004.

24. D. J. Dewitt, S. Ghandeharizadeh, D. Schneider, A. B. H. Hsiao, and R. Rasmussen. The
Gamma Database Machine Project. IEEE ToKaDE, 2(1):44–62, 1990.

25. J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. An extended set of FORTRAN
basic linear algebra subprograms. ACM Trans. Math. Softw., 14(1):1–17, Mar. 1988.

26. S. Ducasse, D. Pollet, and L. Poyet. A Process-Oriented Software Arch. Reconstruction
Taxonomy. In CSMR, 2007.

27. Eclipse graphical modeling framework. http://www.eclipse.org/gmf.
28. A. Egyed, N. Mehta, and N. Medvidovic. SW Connectors and Refinement in Family Arch. In

IWSAPF, 2000.
29. Epsilon. http://www.eclipse.org/gmt/epsilon/.
30. J. Favre. Cacophony: Metamodel-driven architecture recovery. In WCRE. IEEE Computer

Society, 2004.
31. H. Garcia-Molina, J. Ullman, and J. Widom. Database Systems: The Complete Book. Prentice

Hall, 2009.
32. D. Garlan. Style-Based Refinement for Software Architecture. In ISAW, 1996.
33. Google app engine. http://code.google.com/appengine/.
34. M. M. Gorlick and R. R. Razouk. Using Weaves for Software Construction and Analysis. In

ICSE, 1991.
35. C. Green, D. Luckham, R. Balzer, T. Cheatham, and C. Rich. Report on a knowledge-based

software assistant. Kestrel Institute Technical Report KES.U.83.2, 1983.
36. J. A. Gunnels, F. G. Gustavson, G. M. Henry, and R. A. van de Geijn. FLAME: Formal Linear

Algebra Methods Environment. ACM Transactions on Mathematical Software, 27(4):422–455,
Dec. 2001.

37. J. A. Gunnels and R. A. van de Geijn. Formal methods for high-performance linear algebra
libraries. In R. F. Boisvert and P. T. P. Tang, editors, The Architecture of Scientific Software,
pages 193–210. Kluwer Academic Press, 2001.

38. R. Heckel and S. Thöne. Behavior-Preserving Refinement Relations Between Dynamic Soft.
Arch. In WADT, 2004.

39. E. Hehner. Predicative Programming Part 1. CACM, 1984.
40. R. Holt, A. Winter, and A. Schurr. GXL: Toward a Standard Exchange Format. In Reverse

Engineering, Nov. 2000.
41. S. L. P. Jones and A. L. M. Santos. A transformation-based optimiser for haskell. Science of

Computer Programming, 32(1-3):3–47, 1998.
42. E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click Modular Router.

ACM Trans. Comput. Syst., 18(3):263–297, Aug. 2000.
43. R. Koschke. Architecture Reconstruction: Tutorial on Reverse Engineering to the Architectural

Level. In LNCS 5413, 2009.
44. C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh. Basic linear algebra subprograms

for Fortran usage. ACM Trans. Math. Softw., 5(3):308–323, Sept. 1979.
45. R. Lopez-Herrejon and D. Batory. A Standard Problem for Evaluating Product-Line Method-

ologies. In GPCE, 2001.
46. O. Maqbool and H. Babri. Hierarchical Clustering for Software Arch. Recovery. IEEE TSE,

pages 759–780, 2007.
47. B. Marker, J. Poulson, and R. van de Geijn. Towards Automatic Optimization of Dense Linear

Algebra Algorithms for Distributed Memory Machines. In Preparation, 2011.

http://www.eclipse.org/gmf
http://www.eclipse.org/gmt/epsilon/
http://code.google.com/appengine/

48. T. Mens, K. Czarnecki, and P. V. Gorp. A Taxonomy of Model Transformations. In GraMoT,
2005.

49. D. L. Métayer. Describing Software Arch. Styles Using Graph Grammars. IEEE TSE,
24(7):521–533, 1998.

50. M. Moriconi, X. Qian, and R. A. Riemenschneider. Correct Architectural Refinement. IEEE
TSE, 21:356–372, 1995.

51. National Instruments LabView 8. http://www.ni.com/labview/.
52. J. Poulson, B. Marker, J. R. Hammond, N. A. Romero, and R. van de Geijn. Elemental: A

new framework for distributed memory dense matrix computations. ACM Transactions on
Mathematical Software, 2010. submitted.

53. M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti,
A. Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. SPIRAL: Code generation
for DSP transforms. Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation”, 93(2):232– 275, 2005.

54. refinement. Program refinement. http://en.wikipedia.org/wiki/Program_
refinement.

55. T. L. Riché and D. Batory. Extraction of MDE Architectures From Parallel Streaming
Applicaitions. Technical Report TR-10-38, University of Texas at Austin, Dept. of CS, 2011.

56. T. L. Riché, H. M. Vin, and D. Batory. Transformation-Based Parallelization of Requst-
Processing Architectures. In MODELS, October 2010.

57. Simulink. http://www.mathworks.com/products/simulink/.
58. D. R. Smith and E. A. Parra. Transformational approach to transportation scheduling. 8th

Knowledge-Based Software Engineering Conference, 1993.
59. M. Snir, S. W. Otto, S. Huss-Lederman, D. W. Walker, and J. Dongarra. MPI: The Complete

Reference. The MIT Press, 1996.
60. J. Spivey. The Z Notation: A Reference Manual. Prentice Hall, 1989.
61. W. Thies. Lang. and Compiler Support for Stream Programs. PhD thesis, MIT, Feb. 2009.
62. S. Trujillo, D. Batory, and O. Diaz. Feature Oriented Model Driven Develop.: A Case Study

for Portlets. In ICSE, 2007.
63. T. Tseng, J. Aldrich, D. Garlan, and B. Schmerl. Semantic Issues in Arch. Refinement.

Technical report, CMU, 2004.
64. R. A. van de Geijn. Using PLAPACK: Parallel Linear Algebra Package. The MIT Press,

1997.
65. R. A. van de Geijn and E. S. Quintana-Ortı́. The Science of Programming Matrix Computations.

www.lulu.com, 2008.
66. M. Volter and I. Groher. Product Line Implementation using AO and MD Software Develop-

ment. In SPLC, 2007.
67. S. Wang, G. S. Avrunin, and L. A. Clarke. Arch. Building Blocks for Plug-and-Play System

Design. In CBSE, 2006.
68. S. Zschaler and et. al. VML*: A Family of Languages for Variability Management in Software

Product Lines. In SLE, 2009.

http://www.ni.com/labview/
http://en.wikipedia.org/wiki/Program_refinement
http://en.wikipedia.org/wiki/Program_refinement
http://www.mathworks.com/products/simulink/

A Cascading Joins in Gamma

Optimizations are needed to speed-up the processing of cascading joins, where the
output of one join becomes the input of another (see Figure 17a). Figure 17b reveals the
partial internals of HJOIN boxes where the output of the first join is formed by merging
substreams C1 . . .Cn into stream C and then C is immediately hash-split into substreams
D1 . . .Dk. This is serialization bottleneck. Unlike the bottlenecks in Section 3.3, cascading
joins use different join keys, so that the partitioning of C before its merge is different
than the partitioning of C after the hash-split (n 6= k).

HJOIN
HJOIN

HJOIN

C1

Cn

...
D1

Dk

...MERGE HSPLIT

E1

En
... MERGE

HSPLIT

C

E

HSPLIT MERGEC1

Cn

...
D1

...

HSPLIT MERGE Dk

C11

C1k

Cn1

Cnk

C11

Cn1

C1k

Cnk

HJOIN
[A]ij ...

...

...

[B]kj
[A B]jn

(a)

(b)

(c)

(d)

Fig. 17. Rotation of MERGE and HSPLIT

Here is where refinement is insuffi-
cient to derive a streaming architecture;
encapsulation boundaries must be bro-
ken to eliminate serialization bottlenecks.
A particular transformation, called a ro-
tation, is used to remove these bottle-
necks. A rotation swaps the order of op-
erations. Box sequence A followed by B

(denoted A;B) is rotated to Bn⊗Ak, which
represents the cross bar of B1 . . .Bn with
A1 . . .Ak.

MERGE;HSPLIT in Figure 17b is ro-
tated to HSPLITn⊗MERGEk in Figure 17c.
Each Ci is hash-split into k substreams
(Ci1 . . . Cik) and sets of n substreams
(C1j . . .Cnj) are merged into stream Dj
(j ∈ 1 . . .k). This rotation preserves the
property that tuples of C whose hash-
value is j are assigned to stream Dj, while
eliminating a serialization bottleneck. A
drawback is bookkeeping: between the
HSPLIT and MERGE boxes is an n×k ar-
ray of substreams, which we denote by
[C]nk.

Gamma’s HJOIN architecture gener-
alizes from Figure 3a to Figure 17d: a
single HJOIN box takes arrays [A]ij and
[B]kj of substreams as input (stream A is hash-partitioned into i×j disjoint substreams
and B into k×j disjoint substreams) and produces a array [Aon B]jn of substreams as
output (A on B is hash-partitioned into j× n disjoint substreams). Rotations arise in
parallel database architectures generally and Gamma’s architecture in particular.

One additional production should be added to Gamma’s grammar to express these
design transformations:

ROTATION : MERGE;HSPLIT
| HSPLITn⊗MERGEk ;

	Architecture Design by Transformation
	Introduction
	The Principles of Refinement and Optimization
	Refinement
	Optimization
	Perspectives
	Organization.
	Design.
	Existing Tools.
	Executability.
	Testing.
	Challenge and Experience.

	Hash Joins in Database Machines
	Bloom Filtering Refinement
	Parallelizing Refinements
	Optimizations
	Perspective
	Grammar.
	Evaluation and Correctness.

	Distributed Memory Cholesky Factorization
	Refinements
	Redundant Redistribution Optimization
	Redistribution Refinement
	Another Redistribution Optimization
	Perspective
	Grammar.
	Evaluation.
	Correctness.

	Tools, Methodology and Experience
	Tools
	Models
	Transformations
	Further Work

	Methodology and Experience

	Related Work
	Conclusions
	Acknowledgments.

	Cascading Joins in Gamma

